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Simple procedure for correcting equations of evolution: Application to Markov processes
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A general procedure is proposed for correcting evolution equations, arising in different branches of science.
Its application to Markov processes shows that the coefficients of the third- and higher-order derivatives in the
Kramers-Moyal expansion are, in general, not small; nevertheless, the macroscopic-time evolution of the
process is completely described by a differential equation of second order. For Brownian motion, this equation
is Galilean invariant, while the Fokker-Planck equation is not. Finally, a correction is derived for the master
equation,[S1063-651X97)01411-9

PACS numbes): 05.40:+j, 02.50.Ga, 02.20.Mp

INTRODUCTION theory. With the evolution equatiofl) is associated a one-

In this paper, a general procedure is proposed for correcﬁ-)arameter semigroufl] of linear operatorsv, such that

ing evolution equations, arising in different branches of sci- ) =W T(x,0)], .W'th. the semigroup propertwfﬁ-rz
ence. It is based on the fact that the time interval, which is= W-,W-, and the identity operator=Wjy. The evolution
viewed as infinitesimal in the construction of the evolutionoperatorA is then theinfinitesimal generatoof this semi-
operator, normally has an inherent lower bound, belowgroup, so thafl]
which a different, more microscopic level of description is

required. The proposed procedure improves the accuracy of

the evolution operator without changing the level of descrip-

tion. Using this procedure and the conceptroinvariance

introduced below, an evolution equation is derived for Mar-and also

kov processes without the usual assumptions concerning the

moments of fluctuations(Some of these assumptions are W =exp(7A). ()]
shown to be false, while others are superfluplise deriva- ) ] ] )
tion shows that the coefficients of the third- and higher-order! € evolution of the system at short times is often found via
derivatives in the Kramers-Moyal expansion are, in genera/S0me perturbation approach and then used to determie
not small; nevertheless, the macroscopic-time evolution ofndicated by Eq(2), even though the semigroup operaitdy

the process is completely described by a differential equatiof’ay not have been introduced explicitly.

of second order. This surprising development parallels

closely the emergence of the Gaussian distribution in the PROPOSAL

central limit theorem and resolves the long-standing problem

of truncating the Kramers-Moyal expansion. For BrownlanmOdel there is normally an inherent lower bound fobelow

motion, the evolution equation derived below is Galilean in-WhiCh the model breaks down and a more microscooic level
variant, while the Fokker-Planck equation is not: The expres- P

sion for the diffusion coefficient in the latter yields different ?r: d(isc_?ptmré b_eco;]neg a”ne_cessny._b1|'hus, \(/j\nttr;m tff1e mtt)r:jel,
values in different Galilean frames. € limit 79 1S physically Impossible, and theretore the

Finally, the concept of the transition rate is shown to IackevOIUtlorl operator actually obtained is
self-consistency, and a correction is derived for the master Wo—I
equation in the form of an operator expansion. The master B=——— (4)
equation is shown to be an approximate substitute for the T

differential evolution equation, which amounts to a completewhereT is small in some sense. usually in the sense of bein
reversal of the conventional view. ’ y 9

much smaller than the typical macroscopic time interval of
interest in the problem. This smallnessois then assumed
EQUATIONS OF EVOLUTION AND SEMIGROUPS to guarantee thas is a sufficiently good approximation for
The behavior of a physical system is often described bf" IF would certa[nly be useful to_ﬂnd Some means of esti-
i . mating the error involved and of improving the approxima-
an evolution equation o
tion if necessary.
The following observation delivers both: E@) can be

A=Ilim

7—0

2

Here | want to stress the following: In every theoretical

af(x,t):A[f(X 0] (1) rewritten aswW,=1+ 7B and then Eq(3) yields A=7"1In(l
ot T +7B), i.e., the expansion
whereA is a linear operator, which does not depend on time. A= B—I BZ+T—2 B3_... (5)
The determination of is usually the principal task of the 2 3 '
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which can be used for evaluating and improving the approxi- _
mation of the evolution operator. ¢(X,t:k.T)EJ d¢ e w(x,t;€,7). (8)

In some cases, a more direct approach will be possible:
Knowing W, for some smalir may allow one to determin@  The characteristic function of the transition probability can
exactly by solving Eq.(3) instead of first constructing the be expressed via the moments of the fluctuations
approximatiorB and then correcting it via the expansi@).  u.,(x,t;7)=[d&é £™w(x,t;&,7) as
All the results below, except Eq36), are obtained in this
way.
It should be noted that the time-independence restriction, ¢(X'tika7):1+m2:1
imposed onA in the beginning, is not crucial: It is quite
obvious that variation oA or B on macroscopic time scales The alternative expression involves the cumulants of the
Tmacro Will NOt alter the validity of Eqs(3) and (5) whenr  flyctuationsk (X, t; 7),
< Tmacro- Moreover, since some of the basic results of the
semigroup theory remain valid for nonlinear operatdth (ik)™
the expansioit5) can be expected to work even for nonlinear d(x,tk,7)=exg X mi
operatorsA andB. The discussion below will be confined to m=1 |
linear operators, however.

(ik)™
m!

Mm(xit;T)- (9)

km(Xt;7) |, (10)

where k= u,=(§), K2:M2_M§:<§2>_<§>22021 K3
=p3—3uuy+2us, etc.[4,5]; (¢ ando? are the mean and
MARKOV PROCESSES: PRELIMINARIES the variance of the fluctuations, respectively.

Let us first consider the case of a spatially and temporally
ﬂomogeneous process=w(¢, 7). (This case will lead even-
tually to an evolution equation with constant coefficients.
Equation(6) takes the form

As an application of the above proposal, let us consider
Markov process. Lew(x,t;&,7)dé denote the(transition
probability that the systertsay, a Brownian particjewhich
was at the pointgenerally, in the stajex at timet, will be
found betweerx+ ¢ and x+ £+ d¢& at the timet+ 7. This
implies the assumption that, in order to predjstobabilisti- p(x,t+ T):f dé p(x—=&Hw(§, =W [p(xt)],
cally) the position of the particle at time+ 7, it will be
sufficient to knowonly its positionx at timet and not, say, which is a convolution; hence we can write
also its velocity, or its positions at previous times, dthe
Markov property. For this to be true, the time interval p(k,t+7)=d(K, 1) (K, 1). (1)
should be chosen according to Einstein’s prescriptieee
[2] and [3], p. 3: = must be “so large that the motions We also have the Chapman-Kolmogorov equafi@as)
performed by a particle during two consecutive time inter-
vals 7 may b_e con_sider_ed as mutually_ independent eve_n_ts.” W(&, 7+ Tz):J de'w(é— &, mw(g' ), (12
Then, following Einstein, one can write for the probability

densityp(x,t) of the stochastic variable, which means that

W’T + 7.
p(Xx,t+ T)=J- dé p(x—&DW(Xx—E&,1 €, 7). (6) 172

(k711 72) = p(K, 71) p(K, 7). (14)

Once the transition probabilitw(é&,7), or the operator
W, for an arbitrarily choselifwithin the appropriate limifs
7 is known, the evolution of the Markov process is com-
pletely determined. The converse is not true: To a single
Markov process there corresponds an infinite family of prob-
abilitiesw(&,7) or operatord ..

=W,,W,,, (13

The limits of integration implied in Eq(6) and throughout
the paper are-« to «. The transition probability density
satisfies the normalization conditigrd¢ w(x,t;&,7)=1.

As pointed out by Einstein, Eq6) holds true only for
sufficiently larger, i.e., for > 7., Wherer,, denotes the
time scale of correlation between consecutibangesof x;
otherwise the process ceases to be Markox. if the posi-
tion of a Brownian particler.,, is the velocity autocorrela-
tion time (see[3], p. 45, and 4], pp. 74-76 and 206for a 7 INVARIANCE
large (a few micrometersBrownian particle, Eq(6) then Choosing a particular value for is akin to choosing a

holdos true (I)Imy for~_r dOf odrd_er 1 dsec and greatl_err.] Thhe I'm't_particular coordinate system in space-time or choosing a par-
7—0, usually considered In order to accomplish the transiy; 1o vajue for the phase of a wave function. In all such

tion to a differential equation, shc_)uld be understooq to MeaRases, making the choice is necessary in order to specify the
only that 7< Tyacro, WNEre inacro iS the macroscopic time oy sica| situation precisely, but the choice is arbitrary be-
scale that characterizes variation with timef p(x,t) and  5,se the physics itself does not depend on it. Normally, this
W(X't;g’T).' - . . means that the mathematical description of the phenomenon
Let us introduce characteristic functions in the usual waymnst e invariant under arbitrary variation of that choice, a
requirement of the most fundamental importance. | now ask
the following question: Can one find a form of description of

— jkx
'p(k’t)_f dx €¥p(x.1), @) a Markov process that imanifestly invarianunder arbitrary
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change ofr (a minvariant description? macroscopic time intervals, we are freeréplacethe actual
Once asked, this question is answered easily. Equatioridarkov process with a different one, provided only it has the
(10) and (14) imply samea; and a,. The most convenient replacement has
=0 for m=3, i.e., its transition probability is Gaussian. The
Km(T1F 72) = km(T1) + Kl 72), (19  evolution equation fop(x,t) then becomes
which means that, for ain=1,2,3 ... ,o, ap J & [ ay
L [ B
Kkin(T) = amT, (16) ot oX ox\ 2

The emergence of the second-order differential equagan

as a description of the macroscopic-time evolution of a Mar-
<ov process is thus entirely analogous to the emergence of
he Gaussian distribution in the central limit theorem.

The evolution operator in E21) is 7invariant. Provided
one can evaluate the me&§ and the variancer? of the
fluctuations taking place during an arbitrarily chogerthin
the appropriate limitsinterval 7, its coefficients can be cal-
(17)  culated asa;={¢)/ 7 and a,/2= g?/27. Repeating this cal-
culation for different values of should yield the same re-
sult; this provides a self-consistency check.

where the quantitieg,, are independent of. The complete
set{a,} thus provides a completeinvariant description of
a given Markov process; i.e., there is one-to-one correspo
dence between a given process and the associatéd skt

Once a particulat is chosen, the usual forms of descrip-
tion are easily recovered since

d)(k,r):ex;{rz (ik) am.

m=1 m!

The quantitiesa,, have dimensiongx]™/[t] and can be

calledrate invariantsof the fluctuations. COMPARISON WITH PREVIOUS WORK

EVOLUTION EQUATION We have followed the most direct route, indicated by Eq.
(3). All the literature on the subject follows instead the route

Let us now turn to the derivation of the differential evo- ¢ ribed by Eq(2). That is, one obtains for the Fourier
lution equation forp(x,t), associated with the semigroup image ofA, using Ed.(9) ’

(13) and (14). Comparing Eqs(3) and(17), we see that the
Fourier image of the evolution operator is

o0 .km m
mZ‘l(l) M

. | lim —, (22
(ik)m m o
> - @m (18)
m=1 : which leads to the Kramers-Moyal expansieh5,8|
which leads immediately to the evolution equation for p & gm "
x,t), viz., = —ym | = | im &
p(x.1) . mE:l( D" [ |er10 —lp|. @3
P I [y,
EZmE:l (D" =& o P (19 [Formally, Eq.(22) is equivalent to Eq(18) because Eq.

(16), in conjunction with the standard formulas expressing

[The coefficientsx,,/m! could be put in front of the differ- the momentszvia the cumulanS], shows that, as—0,
entiation signs; the above form is preferable because it rem=km*O(7%).] Truncated after the second-derivative
mains valid for a general process wherg= a(x,t), as we term, expansiofi23) produces the Fokker-Planck, or forward

shall see below. Kolmogorov, equation.
For macroscopic times, one crucial simplification is pos- Lacking the insight into the true nature of the expansion
sible. It follows from Eq.(11) that coefflc!ents, the existing denvatlon's'JusUfy the truncation py
assuminghat form=3 these coefficients are zero or negli-
P(kt+nr)=[d(k,7)]"w(k,t). (20) gibly small[9,7,5. As discussed before, this assumption is

false; this serious inconsistency has been known for some

SiNceTeon< 7< Tmacro: the evolution of the system over mac- time (see[4], p. 199, and 8], p. 233, but remained unre-
roscopic time intervals is determined by E@O0) with n solved. The other commonly made assumptions, viz., that
>1. But asn—o, [¢(k,7)]"—=[y(k,7)]", where y(k,7) lim,_ou,/7and lim._qu, /7 exist, are seen to be superflu-
=exp(k(¢)exp(—k?c?2) is the characteristic function of a ous, as is the limitr—0 itself.
Gaussian with the same values of the mean and the variance In applications, the values of the coefficients in the
as the actual transition probability. The proof of this state-Fokker-Planck equation are often found by requiring that the
ment is identical to the proof of the central limit theorem equation produce correct results for the cases whéxg) is
(see, e.g.[6], p. 383, and7], p. 68. known, e.g., in thermodynamic equilibrium. However, there

This means that for macroscopic time intervals only theexist situations where the connection of the coefficients with
first two invariantsa; anda, are importantthe values of all ~ fluctuations is important, and then new problems arise. Since
the rest as,a4,as,..., are immaterial (Note that no as- the limit 7—0 is physically impossible, the values gf, /7
sumption has been made about the smallnesspfor m  that are actually used correspond to some small but finite
=3, these quantities are determined by the particular Mar¢see[4], pp. 195 and 196 The drift coefficientu, /7 hap-
kov process and can have any values whatsoeVeus, for  pens to equaly; exactly becausg, = k,=(£), but the dif-



5126 GREGORY RYSKIN 56

fusion coefficient is calculated incorrectly whenever a finite W
is used. Namely, one obtaif{g?)/27 instead of the correct ¢>(y,t?k,7)5f dx e Vw(y,t;x—y, 7). (26
value o?/27. (The two values coincide in the absence of

the drift, howeve). The error is likely to be negligible when Multiplying both sides of Eq(25) by €%, integrating over
7is very small, but can be significant in problems with largex, and then denoting by the remaining integration variable,

Teorrs SUCh @s motion of large Brownian particles. one obtains

More importantly, the Fokker-Planck expressiqff)/2r
for the diffusion coefficientestroys the Galilean invariance Kt+ :f dx b (x.t-k x.t 2
of the evolution equation. Let a Brownian motion be ob- vikt+) Hx.tkTPXL). @7

served from two different Galilean fram&sandF’, where
F’ moves with respect té- with constant velocityv, di-
rected along thex axis. The Galilean transformation of the Pk t+ 1) =0 (D[ p(k,t)], (28)
coordinates is ther’ =x—wvt, t'=t. The probability distri-
bution of the particle’s position is a Galilean scalar _
p’(x',t')=p(x,t). The evolution equation satisfied by this @ ([ ]EJ’ dx e%p(x,t;k, N[ 1, (29
distribution is Galilean invariant if it takes the same form in
both F andF’. It is not hard to show that this will be the where§™ stands for inverse Fourier transform. For a spa-
case if and only if the drift coefficient transforms as velocity, tially homogeneous process, the linear operako(t) re-
while the diffusion coefficient is a Galilean scalar. Sirde  duces to multiplication byp(t;K, 7).
=¢—vrt, so that(¢')7=(&)/m—v, the drift coefficient Consider Egs(28) and (29) and write ¢(x,t;k,7) in the
(&)/ 7 does transform properly. But the diffusion coefficient form (17), where nowa,= ay(X,t). If a functiong(t) sat-
will transform properly only if the expressiom?/27 is used isfies the relatiomg(t+ 7)=e*"g(t) and « varies on a time
for it: It is easy to check that'?= o2, while (¢'2)#(&£?).  scale that is much greater thanthend In g/dt=«a, so that
That is, the Fokker-Planck expression for the diffusion coef-dg/dt=ag. Similarly, Eq.(28) yields
ficient yields different values in different Galilean frames. .
The difference can be arbitrarily large because it depends on  d#(K,t) _f dx &9 3 (ik)™
the relative velocity. a )Y m=p ml
Note also that the fundamental solution of E2[1) is the
normal distribution with the variance,t= (t/7)o?, i.e., the Z (k)™ o
variance of the sum df ~ independent jumps equals the sum :mZ:l mi f dx €%am(x,H)p(x,t), (30)
of their variances, in perfect agreement with one of the basic
theorems of probability. The corresponding Fokker-Planckand then the inverse Fourier transform leads to (&§).
result is the sum of the second moments, which is wrong.  To proceed further, we write, instead of EGO),
We see that in the Einstein relation connecting fluctua-

This can be written as

am}%’_[w(k!t)]

tions with the diffusion coefficientand through it with the gk t+nr) =@ (t+(n=1)7)[ - P (t+27)
viscosity, or dissipation the mean square of the fluctuations

must be replaced by their variance. There is little doubt that [©(t+D[PAO[H(kDIT]---] (3D
the same is true for other fluctuation-dissipation relations as

well. For small k, Eg. (10) can be written as¢(x,t;k,7)

It should be possible to correct the Fokker-Planck equa= y(x,t;k,7)[1+0O(k®], where y(x,t;k,7) is again the
tion a posterioriby including one more term of the expan- characteristic function of a Gaussian with the same values of
sion (5), truncated after the second derivative. The resultinghe mean and the variance. If we now replaceggdl in Eq.

correction is (31) by y's, the expression on the right-hand side will differ
from ¢(k,t+n7) by a factor that can be estimated as

[ (&) a\? (&% & [1+0(k*]". As n—oe, this factor will tend to 1 because
2 ( T oxl T 27 W? 24 the range ok where the above expression has non-negligible

values will be shrinking as~*? due to the second exponen-
tial in 's. (The rigorous version of the proof sketched above
should impose certain conditions on the transition probabil-
ity, similar to the ones required by the general central limit
THE INHOMOGENEOUS CASE theorem) Thus we are led again to E(R1), but this time its
. . ' coefficients are functions of andt.
Our discussion so far has been confined to homogeneous In retrospect, the emergence of H81) appears almost

proces..:ﬁs; no(\j/\; we relax this rgitnct}[ﬂn agdfalimwndﬁ 0 self-evident: Whatever might be the actual transition prob-
vary with x andt on macroscopidength and time scalepA  ,pijiies after a Brownian particle experienced many micro-

reader who wants to skip this part should move to 6g).] scopic jumps, the probability distribution of its position

It will be convenient to usg=x—¢; then Eqs.(6) and(8) should be the same as if all the transition probabilities had
become been Gaussian, with the same values of the mean and the
variance as the actual onéle central limit theorem Con-
sequently, for macroscopic time intervals H49) can be
replaced by Eq(21).

this does lead to Eq21) becausd £2) — (£)%= 2.

p(x,t+r)=J dy p(y,tyw(y,t;x—y,7), (25
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THE MASTER EQUATION dition |p(k)|<1 required of a characteristic functidisee
410], p. 499. That is,r(¢) defined by Eq.(33) cannot be
non-negative. For example, if the transition probability is
Gaussian, the first two moments 6f(¢) are equal to the
ap(x.t) first two cumulants ofw(¢,6), while all the higher ones
. f de[p(x—&Dr(x—& 18 —pX,Or(xt;—&)] vanish. Them (£) is a linear combination of(¢) and its first

at and second derivatives; the derivatives &) violate the
_ non-negativity conditiorisee[11], p. 12.

MIp(x.D1, (32 Of course, the limitr— 0 is never actually taken; instead,
where thetransition rate r(x,t;¢), also calledtransition some small but finite valu_e of IS used in cglculatlon(ss_ee
probability per unit timeis defined by the equatidisee[4], [4]’. p. 98. If the symb.ol lim_.o in Eq. (33) is dropped(in
p. 96, and8], p. 229 which case thgﬁ functl'ons bgcome superfluous ade- 7)

and the result is substituted into E§2), the latter becomes

MREDTOAE (g AROG _ [dE X EDWK &6 T —P(XD
at T ’

Consider now the master equation for Markov processe
usually written in the forrmi4,8]

"(X,t;g)—[f dé¢ r}5(§)= lim

7—0

(35

and must satisfy the condition(x,t;&)=0 (see[4], pp. 96  Which is a finite-difference approximation for the evolution
and 98. Let us inquire whether the concept of transitrate ~ equation, based on E¢G). That meansv fits the pattern of

is a viable one. Note thafdé r has dimensions of inverse Ed.(4). To improve the accuracy of the master equation, one
time and defined=[fdé& r]~1. Consider a homogeneous can use the expansiab), viz.,

process. The produdr (¢) satisfies the normalization con- ap 5
dition and can be viewed as a probability distribution; its M T M2 +T_ M3pl—--- 36
characteristic function is at p] 2 p] 3 p] ' (36)

(ik)m = (k)M This must converge to Eq19), which can be replaced by
p(K)=1+6, —— lim @:1+ > —— anf Eqg. (21) as discussed .above. Thus .the master equgtion is but

m=1 m=1 M an approximate substitute for the differential evolution equa-
tion (21), a complete reversal of the conventional vie#y.

©

7—0
=1+Ing(k, 6). (34
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