
PHYSICAL REVIEW E NOVEMBER 1997VOLUME 56, NUMBER 5
Simple procedure for correcting equations of evolution: Application to Markov processes

Gregory Ryskin
Department of Chemical Engineering, Northwestern University, Evanston, Illinois 60208

~Received 28 May 1996!

A general procedure is proposed for correcting evolution equations, arising in different branches of science.
Its application to Markov processes shows that the coefficients of the third- and higher-order derivatives in the
Kramers-Moyal expansion are, in general, not small; nevertheless, the macroscopic-time evolution of the
process is completely described by a differential equation of second order. For Brownian motion, this equation
is Galilean invariant, while the Fokker-Planck equation is not. Finally, a correction is derived for the master
equation.@S1063-651X~97!01411-6#

PACS number~s!: 05.40.1j, 02.50.Ga, 02.20.Mp
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INTRODUCTION

In this paper, a general procedure is proposed for corr
ing evolution equations, arising in different branches of s
ence. It is based on the fact that the time interval, which
viewed as infinitesimal in the construction of the evoluti
operator, normally has an inherent lower bound, bel
which a different, more microscopic level of description
required. The proposed procedure improves the accurac
the evolution operator without changing the level of descr
tion. Using this procedure and the concept oft invariance
introduced below, an evolution equation is derived for M
kov processes without the usual assumptions concerning
moments of fluctuations.~Some of these assumptions a
shown to be false, while others are superfluous.! The deriva-
tion shows that the coefficients of the third- and higher-or
derivatives in the Kramers-Moyal expansion are, in gene
not small; nevertheless, the macroscopic-time evolution
the process is completely described by a differential equa
of second order. This surprising development paral
closely the emergence of the Gaussian distribution in
central limit theorem and resolves the long-standing prob
of truncating the Kramers-Moyal expansion. For Browni
motion, the evolution equation derived below is Galilean
variant, while the Fokker-Planck equation is not: The expr
sion for the diffusion coefficient in the latter yields differe
values in different Galilean frames.

Finally, the concept of the transition rate is shown to la
self-consistency, and a correction is derived for the ma
equation in the form of an operator expansion. The ma
equation is shown to be an approximate substitute for
differential evolution equation, which amounts to a compl
reversal of the conventional view.

EQUATIONS OF EVOLUTION AND SEMIGROUPS

The behavior of a physical system is often described
an evolution equation

] f ~x,t !

]t
5A@ f ~x,t !#, ~1!

whereA is a linear operator, which does not depend on tim
The determination ofA is usually the principal task of the
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theory. With the evolution equation~1! is associated a one
parameter semigroup@1# of linear operatorsWt such that
f (x,t)5Wt@ f (x,0)#, with the semigroup propertyWt11t2

5Wt1
Wt2

and the identity operatorI 5W0 . The evolution

operatorA is then theinfinitesimal generatorof this semi-
group, so that@1#

A5 lim
t→0

Wt2I

t
~2!

and also

Wt5exp~tA!. ~3!

The evolution of the system at short times is often found
some perturbation approach and then used to determineA as
indicated by Eq.~2!, even though the semigroup operatorWt
may not have been introduced explicitly.

PROPOSAL

Here I want to stress the following: In every theoretic
model there is normally an inherent lower bound fort, below
which the model breaks down and a more microscopic le
of description becomes a necessity. Thus, within the mo
the limit t→0 is physically impossible, and therefore th
evolution operator actually obtained is

B5
Wt2I

t
, ~4!

wheret is small in some sense, usually in the sense of be
much smaller than the typical macroscopic time interval
interest in the problem. This smallness oft is then assumed
to guarantee thatB is a sufficiently good approximation fo
A. It would certainly be useful to find some means of es
mating the error involved and of improving the approxim
tion if necessary.

The following observation delivers both: Eq.~4! can be
rewritten asWt5I 1tB and then Eq.~3! yields A5t21ln(I
1tB), i.e., the expansion

A5B2
t

2
B21

t2

3
B32••• , ~5!
5123 © 1997 The American Physical Society
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5124 56GREGORY RYSKIN
which can be used for evaluating and improving the appro
mation of the evolution operator.

In some cases, a more direct approach will be possi
Knowing Wt for some smallt may allow one to determineA
exactly by solving Eq.~3! instead of first constructing th
approximationB and then correcting it via the expansion~5!.
All the results below, except Eq.~36!, are obtained in this
way.

It should be noted that the time-independence restrict
imposed onA in the beginning, is not crucial: It is quite
obvious that variation ofA or B on macroscopic time scale
tmacro will not alter the validity of Eqs.~3! and ~5! when t
!tmacro. Moreover, since some of the basic results of
semigroup theory remain valid for nonlinear operators@1#,
the expansion~5! can be expected to work even for nonline
operatorsA andB. The discussion below will be confined t
linear operators, however.

MARKOV PROCESSES: PRELIMINARIES

As an application of the above proposal, let us conside
Markov process. Letw(x,t;j,t)dj denote the~transition!
probability that the system~say, a Brownian particle!, which
was at the point~generally, in the state! x at time t, will be
found betweenx1j and x1j1dj at the timet1t. This
implies the assumption that, in order to predict~probabilisti-
cally! the position of the particle at timet1t, it will be
sufficient to knowonly its positionx at time t and not, say,
also its velocity, or its positions at previous times, etc.~the
Markov property!. For this to be true, the time intervalt
should be chosen according to Einstein’s prescription~see
@2# and @3#, p. 3!: t must be ‘‘so large that the motion
performed by a particle during two consecutive time int
vals t may be considered as mutually independent even
Then, following Einstein, one can write for the probabili
densityp(x,t) of the stochastic variablex,

p~x,t1t!5E dj p~x2j,t !w~x2j,t;j,t!. ~6!

The limits of integration implied in Eq.~6! and throughout
the paper are2` to `. The transition probability density
satisfies the normalization condition*dj w(x,t;j,t)51.

As pointed out by Einstein, Eq.~6! holds true only for
sufficiently larget, i.e., for t@tcorr, wheretcorr denotes the
time scale of correlation between consecutivechangesof x;
otherwise the process ceases to be Markov. Ifx is the posi-
tion of a Brownian particle,tcorr is the velocity autocorrela
tion time ~see@3#, p. 45, and@4#, pp. 74–76 and 206!; for a
large ~a few micrometers! Brownian particle, Eq.~6! then
holds true only fort of order 1 sec and greater. The lim
t→0, usually considered in order to accomplish the tran
tion to a differential equation, should be understood to m
only that t!tmacro, where tmacro is the macroscopic time
scale that characterizes variation with timet of p(x,t) and
w(x,t;j,t).

Let us introduce characteristic functions in the usual w

c~k,t ![E dx eikxp~x,t !, ~7!
i-

e:

n,

e

a

-
.’’

i-
n

y

f~x,t;k,t![E dj eikjw~x,t;j,t!. ~8!

The characteristic function of the transition probability c
be expressed via the moments of the fluctuatio
mm(x,t;t)[*dj jmw(x,t;j,t) as

f~x,t;k,t!511 (
m51

`
~ ik !m

m!
mm~x,t;t!. ~9!

The alternative expression involves the cumulants of
fluctuationskm(x,t;t),

f~x,t;k,t!5expF (
m51

`
~ ik !m

m!
km~x,t;t!G , ~10!

where k15m15^j&, k25m22m1
25^j2&2^j&25s2, k3

5m323m1m212m1
3, etc.@4,5#; ^j& ands2 are the mean and

the variance of the fluctuations, respectively.
Let us first consider the case of a spatially and tempor

homogeneous processw5w(j,t). ~This case will lead even-
tually to an evolution equation with constant coefficient!
Equation~6! takes the form

p~x,t1t!5E dj p~x2j,t !w~j,t![Wt@p~x,t !#,

which is a convolution; hence we can write

c~k,t1t!5f~k,t!c~k,t !. ~11!

We also have the Chapman-Kolmogorov equation@3–5#

w~j,t11t2!5E dj8w~j2j8,t2!w~j8,t1!, ~12!

which means that

Wt11t2
5Wt1

Wt2
, ~13!

f~k,t11t2!5f~k,t1!f~k,t2!. ~14!

Once the transition probabilityw(j,t), or the operator
Wt , for an arbitrarily chosen~within the appropriate limits!
t is known, the evolution of the Markov process is com
pletely determined. The converse is not true: To a sin
Markov process there corresponds an infinite family of pro
abilities w(j,t) or operatorsWt .

t INVARIANCE

Choosing a particular value fort is akin to choosing a
particular coordinate system in space-time or choosing a
ticular value for the phase of a wave function. In all su
cases, making the choice is necessary in order to specify
physical situation precisely, but the choice is arbitrary b
cause the physics itself does not depend on it. Normally,
means that the mathematical description of the phenome
must be invariant under arbitrary variation of that choice
requirement of the most fundamental importance. I now
the following question: Can one find a form of description
a Markov process that ismanifestly invariantunder arbitrary
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56 5125SIMPLE PROCEDURE FOR CORRECTING EQUATIONS . . .
change oft ~a t-invariant description!?
Once asked, this question is answered easily. Equat

~10! and ~14! imply

km~t11t2!5km~t1!1km~t2!, ~15!

which means that, for allm51,2,3, . . . ,̀ ,

km~t!5amt, ~16!

where the quantitiesam are independent oft. The complete
set$am% thus provides a completet-invariant description of
a given Markov process; i.e., there is one-to-one corresp
dence between a given process and the associated set$am%.

Once a particulart is chosen, the usual forms of descri
tion are easily recovered since

f~k,t!5expF t (
m51

`
~ ik !m

m!
amG . ~17!

The quantitiesam have dimensions@x#m/@ t# and can be
called rate invariantsof the fluctuations.

EVOLUTION EQUATION

Let us now turn to the derivation of the differential ev
lution equation forp(x,t), associated with the semigrou
~13! and ~14!. Comparing Eqs.~3! and ~17!, we see that the
Fourier image of the evolution operator is

(
m51

`
~ ik !m

m!
am , ~18!

which leads immediately to the evolution equation f
p(x,t), viz.,

]p

]t
5 (

m51

`

~21!m
]m

]xm S am

m!
pD . ~19!

@The coefficientsam /m! could be put in front of the differ-
entiation signs; the above form is preferable because it
mains valid for a general process wheream5am(x,t), as we
shall see below.#

For macroscopic times, one crucial simplification is po
sible. It follows from Eq.~11! that

c~k,t1nt!5@f~k,t!#nc~k,t !. ~20!

Sincetcorr!t!tmacro, the evolution of the system over ma
roscopic time intervals is determined by Eq.~20! with n
@1. But asn→`, @f(k,t)#n→@g(k,t)#n, where g(k,t)
[exp(ik^j&)exp(2k2s2/2) is the characteristic function of
Gaussian with the same values of the mean and the vari
as the actual transition probability. The proof of this sta
ment is identical to the proof of the central limit theore
~see, e.g.,@6#, p. 383, and@7#, p. 68!.

This means that for macroscopic time intervals only
first two invariantsa1 anda2 are important;the values of all
the rest, a3 ,a4 ,a5 ,..., are immaterial. ~Note that no as-
sumption has been made about the smallness ofam for m
>3; these quantities are determined by the particular M
kov process and can have any values whatsoever.! Thus, for
ns

n-

e-

-

ce
-

e

r-

macroscopic time intervals, we are free toreplacethe actual
Markov process with a different one, provided only it has t
samea1 anda2 . The most convenient replacement hasam
50 for m>3, i.e., its transition probability is Gaussian. Th
evolution equation forp(x,t) then becomes

]p

]t
52

]

]x
~a1p!1

]2

]x2S a2

2
pD . ~21!

The emergence of the second-order differential equation~21!
as a description of the macroscopic-time evolution of a M
kov process is thus entirely analogous to the emergenc
the Gaussian distribution in the central limit theorem.

The evolution operator in Eq.~21! is t invariant. Provided
one can evaluate the mean^j& and the variances2 of the
fluctuations taking place during an arbitrarily chosen~within
the appropriate limits! interval t, its coefficients can be cal
culated asa15^j&/t and a2/25s2/2t. Repeating this cal-
culation for different values oft should yield the same re
sult; this provides a self-consistency check.

COMPARISON WITH PREVIOUS WORK

We have followed the most direct route, indicated by E
~3!. All the literature on the subject follows instead the rou
described by Eq.~2!. That is, one obtains for the Fourie
image ofA, using Eq.~9!,

(
m51

`
~ ik !m

m!
lim
t→0

mm

t
, ~22!

which leads to the Kramers-Moyal expansion@4,5,8#

]p

]t
5 (

m51

`

~21!m
]m

]xm F 1

m! S lim
t→0

mm

t D pG . ~23!

@Formally, Eq. ~22! is equivalent to Eq.~18! because Eq.
~16!, in conjunction with the standard formulas expressi
the moments via the cumulants@5#, shows that, ast→0,
mm5km1O(t2).# Truncated after the second-derivativ
term, expansion~23! produces the Fokker-Planck, or forwar
Kolmogorov, equation.

Lacking the insight into the true nature of the expans
coefficients, the existing derivations justify the truncation
assumingthat for m>3 these coefficients are zero or neg
gibly small @9,7,5#. As discussed before, this assumption
false; this serious inconsistency has been known for so
time ~see@4#, p. 199, and@8#, p. 233!, but remained unre-
solved. The other commonly made assumptions, viz.,
limt→0m1 /t and limt→0m2 /t exist, are seen to be superflu
ous, as is the limitt→0 itself.

In applications, the values of the coefficients in t
Fokker-Planck equation are often found by requiring that
equation produce correct results for the cases wherep(x,t) is
known, e.g., in thermodynamic equilibrium. However, the
exist situations where the connection of the coefficients w
fluctuations is important, and then new problems arise. Si
the limit t→0 is physically impossible, the values ofmm /t
that are actually used correspond to some small but finit
~see@4#, pp. 195 and 196!. The drift coefficientm1 /t hap-
pens to equala1 exactly becausem15k15^j&, but the dif-
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5126 56GREGORY RYSKIN
fusion coefficient is calculated incorrectly whenever a finitt
is used. Namely, one obtains^j2&/2t instead of the correc
value s2/2t. ~The two values coincide in the absence
the drift, however.! The error is likely to be negligible when
t is very small, but can be significant in problems with lar
tcorr, such as motion of large Brownian particles.

More importantly, the Fokker-Planck expression^j2&/2t
for the diffusion coefficientdestroys the Galilean invarianc
of the evolution equation. Let a Brownian motion be o
served from two different Galilean framesF andF8, where
F8 moves with respect toF with constant velocityv, di-
rected along thex axis. The Galilean transformation of th
coordinates is thenx85x2vt, t85t. The probability distri-
bution of the particle’s position is a Galilean scal
p8(x8,t8)5p(x,t). The evolution equation satisfied by th
distribution is Galilean invariant if it takes the same form
both F and F8. It is not hard to show that this will be th
case if and only if the drift coefficient transforms as veloci
while the diffusion coefficient is a Galilean scalar. Sincej8
5j2vt, so that ^j8&/t5^j&/t2v, the drift coefficient
^j&/t does transform properly. But the diffusion coefficie
will transform properly only if the expressions2/2t is used
for it: It is easy to check thats825s2, while ^j82&Þ^j2&.
That is, the Fokker-Planck expression for the diffusion co
ficient yields different values in different Galilean frame
The difference can be arbitrarily large because it depend
the relative velocityv.

Note also that the fundamental solution of Eq.~21! is the
normal distribution with the variancea2t5(t/t)s2, i.e., the
variance of the sum oft/t independent jumps equals the su
of their variances, in perfect agreement with one of the ba
theorems of probability. The corresponding Fokker-Plan
result is the sum of the second moments, which is wrong

We see that in the Einstein relation connecting fluct
tions with the diffusion coefficient~and through it with the
viscosity, or dissipation!, the mean square of the fluctuation
must be replaced by their variance. There is little doubt t
the same is true for other fluctuation-dissipation relations
well.

It should be possible to correct the Fokker-Planck eq
tion a posteriori by including one more term of the expan
sion ~5!, truncated after the second derivative. The result
correction is

2
t

2 S 2
^j&
t

]

]xD 2

52
^j&2

2t

]2

]x2; ~24!

this does lead to Eq.~21! becausêj2&2^j&25s2.

THE INHOMOGENEOUS CASE

Our discussion so far has been confined to homogene
processes; now we relax this restriction and alloww andf to
vary with x andt on macroscopiclength and time scales.@A
reader who wants to skip this part should move to Eq.~32!.#
It will be convenient to usey[x2j; then Eqs.~6! and ~8!
become

p~x,t1t!5E dy p~y,t !w~y,t;x2y,t!, ~25!
f

-

,

f-
.
on

ic
k

-

t
s

-

g

us

f~y,t;k,t![E dx eik~x2y!w~y,t;x2y,t!. ~26!

Multiplying both sides of Eq.~25! by eikx, integrating over
x, and then denoting byx the remaining integration variable
one obtains

c~k,t1t!5E dx eikxf~x,t;k,t!p~x,t !. ~27!

This can be written as

c~k,t1t!5Ft~ t !@c~k,t !#, ~28!

Ft~ t !@ #[E dx eikxf~x,t;k,t!F2@ #, ~29!

whereF2 stands for inverse Fourier transform. For a sp
tially homogeneous process, the linear operatorFt(t) re-
duces to multiplication byf(t;k,t).

Consider Eqs.~28! and ~29! and writef(x,t;k,t) in the
form ~17!, where nowam5am(x,t). If a function g(t) sat-
isfies the relationg(t1t)5eatg(t) and a varies on a time
scale that is much greater thant, thend ln g/dt5a, so that
dg/dt5ag. Similarly, Eq.~28! yields

]c~k,t !

]t
5E dx eikxF (

m51

`
~ ik !m

m!
amGF2@c~k,t !#

5 (
m51

`
~ ik !m

m! E dx eikxam~x,t !p~x,t !, ~30!

and then the inverse Fourier transform leads to Eq.~19!.
To proceed further, we write, instead of Eq.~20!,

c~k,t1nt!5Ft„t1~n21!t…†•••Ft~ t12t!

@Ft~ t1t!†Ft~ t !@c~k,t !#‡#•••‡. ~31!

For small k, Eq. ~10! can be written asf(x,t;k,t)
5g(x,t;k,t)@11O(k3)#, where g(x,t;k,t) is again the
characteristic function of a Gaussian with the same value
the mean and the variance. If we now replace allf’s in Eq.
~31! by g’s, the expression on the right-hand side will diffe
from c(k,t1nt) by a factor that can be estimated
@11O(k3)#n. As n→`, this factor will tend to 1 because
the range ofk where the above expression has non-negligi
values will be shrinking asn21/2 due to the second exponen
tial in g’s. ~The rigorous version of the proof sketched abo
should impose certain conditions on the transition proba
ity, similar to the ones required by the general central lim
theorem.! Thus we are led again to Eq.~21!, but this time its
coefficients are functions ofx and t.

In retrospect, the emergence of Eq.~21! appears almos
self-evident: Whatever might be the actual transition pro
abilities, after a Brownian particle experienced many mic
scopic jumps, the probability distribution of its positio
should be the same as if all the transition probabilities h
been Gaussian, with the same values of the mean and
variance as the actual ones~the central limit theorem!. Con-
sequently, for macroscopic time intervals Eq.~19! can be
replaced by Eq.~21!.
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THE MASTER EQUATION

Consider now the master equation for Markov process
usually written in the form@4,8#

]p~x,t !

]t
5E dj@p~x2j,t !r ~x2j,t;j!2p~x,t !r ~x,t;2j!#

[M @p~x,t !#, ~32!

where the transition rate r(x,t;j), also calledtransition
probability per unit time, is defined by the equation~see@4#,
p. 96, and@8#, p. 229!

r ~x,t;j!2F E dj r Gd~j!5 lim
t→0

w~x,t;j,t!2d~j!

t
~33!

and must satisfy the conditionr (x,t;j)>0 ~see@4#, pp. 96
and 98!. Let us inquire whether the concept of transitionrate
is a viable one. Note that*dj r has dimensions of invers
time and defineu[@*dj r #21. Consider a homogeneou
process. The productur (j) satisfies the normalization con
dition and can be viewed as a probability distribution;
characteristic function is

r~k!511u (
m51

`
~ ik !m

m!
lim
t→0

mm

t
511 (

m51

`
~ ik !m

m!
amu

511 lnf~k,u!. ~34!

This is impossible, except in the trivial case of thed-
function distribution. In all other cases,f(k,u)→0 ask→
6` ~see@10#, p. 514!, and thusr(k) cannot satisfy the con
a-

t
,

nd

-

s,

dition ur(k)u<1 required of a characteristic function~see
@10#, p. 499!. That is, r (j) defined by Eq.~33! cannot be
non-negative. For example, if the transition probability
Gaussian, the first two moments ofur (j) are equal to the
first two cumulants ofw(j,u), while all the higher ones
vanish. Thenr (j) is a linear combination ofd(j) and its first
and second derivatives; the derivatives ofd~j! violate the
non-negativity condition~see@11#, p. 12!.

Of course, the limitt→0 is never actually taken; instead
some small but finite value oft is used in calculations~see
@4#, p. 98!. If the symbol limt→0 in Eq. ~33! is dropped~in
which case thed functions become superfluous andu5t!
and the result is substituted into Eq.~32!, the latter becomes

]p~x,t !

]t
5

*dj p~x2j,t !w~x2j,t;j,t!2p~x,t !

t
, ~35!

which is a finite-difference approximation for the evolutio
equation, based on Eq.~6!. That meansM fits the pattern of
Eq. ~4!. To improve the accuracy of the master equation, o
can use the expansion~5!, viz.,

]p

]t
5M @p#2

t

2
M2@p#1

t2

3
M3@p#2••• . ~36!

This must converge to Eq.~19!, which can be replaced by
Eq. ~21! as discussed above. Thus the master equation is
an approximate substitute for the differential evolution eq
tion ~21!, a complete reversal of the conventional view@4#.
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